兔子先生直播|麻豆影视传媒下载|韩依人爱豆传媒国产物业|国产成人免费|国产精品一区二区自拍|蜜桃影像传媒翁雨澄|麻豆传媒映画公司张云熙|四虎影院的网址|91精品视频久久|好日吊,亚洲av成人影电伊久在线,2021国产麻豆剧传媒网站入口,灵魂之舞

115周年校慶“學(xué)術(shù)華農(nóng)”系列活動之0109:數(shù)信學(xué)院系列講座GROTHENDIECK-LIDSKII FORMULAE IN HYPERCOMPLEX ANALYSIS

來源單位及審核人: 編輯:審核發(fā)布:數(shù)學(xué)與信息學(xué)院發(fā)布時間:2024-04-30

Add: 483 Wushan Road, Tianhe district, Guangzhou, P.R.China

Website: http://youworhy.com

Postal Code: 510642


華南農(nóng)業(yè)大學(xué)數(shù)信學(xué)院系列講座

報(bào)告人:Uwe Kaehler教授(阿威羅大學(xué))

題目一:  GROTHENDIECK-LIDSKII FORMULAE IN HYPERCOMPLEX ANALYSIS

Curvature detection using TaylorletsCurvature detection using TaylorletsCurvature detection using TaylorletsCurvature detection using TaylorletsCurvature detection using TaylorletsCurvature detection using TaylorletsCurvature detection using Taylorlets日期:2024715

時間:9:30-11:00(北京時間)

地點(diǎn):數(shù)學(xué)與信息學(xué)院西樓605

摘要: The classic Grothendieck-Lidskii formula provides a connection between the trace and Fredholm determinant and the spectrum of a Fredholm operator. Unfortunately, linear algebra over non-commutative structures like Quaternions and Clifford algebras is quite different from classic linear algebra and, consequently, the classic formula does not hold in this case. In this talk we will discuss the difficulties and

show how a type of Grothendieck-Lidskii formula can be established in these cases.

題目二Triangular decompositions of quaternionic non-self-adjoint operators

日期:2024715

時間:11:00-12:30(北京時間)

摘要: One of the principal problems in studying spectral theory for quaternionic or Clifford-algebra-valued operators lies in the fact that due to the noncommutativity many methods from classic spectral theory are not working anymore in this setting. For instance, even in the simplest case of finite rank operators there are different notions of a left and right spectrum. Hereby, the notion of a left spectrum has little practical use while the notion of a right spectrum is based on a nonlinear eigenvalue problem. In the present talk we will recall the notion of S-spectrum as a natural way to consider a spectrum in a noncommutative setting and use it to study quaternionic non-selfadjoint operators. To this end we will discuss quaternionic Volterra operators and triangular representation of quaternionic operators similar to the classic approaches by Gohberg, Krein, Livsic, Brodskii and de Branges. Hereby we introduce spectral integral representations with respect to quaternionic chains and discuss the concept of P- triangular operators in the quaternionic setting. This will allow us to study the localization of spectra of non-selfadjoint quaternionic operators and presented triangular decompositions of non-selfadjoint operators with respect to maximal quaternionic eigenchains.

 

Uwe Kaehler教授簡介葡萄牙Aveiro大學(xué)數(shù)學(xué)系教授,。1998/09于德國Chemnitz University of Technology數(shù)學(xué)系獲得博士學(xué)位;2006/01于葡萄牙Aveiro大學(xué)數(shù)學(xué)系獲得Habilitation高級學(xué)術(shù)資格(歐洲國家第二階段博士),。研究領(lǐng)域?yàn)椋?span lang="EN-US" style="line-height:1.5em;">Clifford分析及應(yīng)用PDE,、算子理論,、逼近論,、離散函數(shù)論調(diào)和分析,。擔(dān)任Advances in Applied Clifford Algebras主編,,以下國際雜志編委(Complex Anal. and Operator Th. Applied Math. and Comp.,、 Central European J. of Math.,、 Open Math. IJWMIP,。 共發(fā)表科研論文一百多篇,。


上一篇:下一篇: